(от Электрон и ...графия
метод изучения структуры вещества, основанный на рассеянии ускоренных электронов исследуемым образцом. Применяется для изучения атомной структуры кристаллов, аморфных тел и жидкостей, молекул в газах и парах. Физическая основа Э. - дифракция электронов (см.
Дифракция частиц); при прохождении через вещество электроны, обладающие волновыми свойствами (см.
Корпускулярно-волновой дуализм), взаимодействуют с атомами, в результате чего образуются отдельные дифрагированные пучки. Интенсивности и пространственное распределение этих пучков находятся в строгом соответствии с атомной структурой образца, размерами и ориентацией отдельных кристалликов и другими структурными параметрами. Рассеяние электронов в веществе определяется электростатическим потенциалом атомов, максимумы которого в кристалле отвечают положениям атомных ядер.
Электронографические исследования проводятся в специальных приборах -
Электронографах и электронных микроскопах (См.
Электронный микроскоп)
; в условиях вакуума в них электроны ускоряются электрическим полем, фокусируются в узкий светосильный пучок, а образующиеся после прохождения через образец пучки либо фотографируются (электронограммы), либо регистрируются фотоэлектрическим устройством. В зависимости от величины электрического напряжения, ускоряющего электроны, различают дифракцию быстрых электронов (напряжение от 30-50
кэв до 1000
кэв и более) и дифракцию медленных электронов (напряжение от нескольких
в до сотен
в)
.
Э. принадлежит к дифракционным структурным методам (наряду с рентгеновским структурным анализом (См.
Рентгеновский структурный анализ) и нейтронографией (См.
Нейтронография)) и обладает рядом особенностей. Благодаря несравнимо более сильному взаимодействию электронов с веществом, а также возможности создания светосильного пучка в электронографе, экспозиция для получения электронограмм обычно составляет около секунды, что позволяет исследовать структурные превращения, кристаллизацию и т. д. С другой стороны, сильное взаимодействие электронов с веществом ограничивает допустимую толщину просвечиваемых образцов десятыми долями
мкм (при напряжении 1000-2000
кэв максимальная толщина несколько
мкм)
.
Э. позволила изучать атомные структуры огромного числа веществ, существующих лишь в мелкокристаллическом состоянии. Она обладает также преимуществом перед рентгеновским структурным анализом в определении положения лёгких атомов в присутствии тяжёлых (методам нейтронографии доступны такие исследования, но лишь для кристаллов значительно больших размеров, чем для исследуемых в Э.).
Вид получаемых электронограмм зависит от характера исследуемых объектов. Электронограммы от плёнок, состоящих из кристалликов с достаточно точной взаимной ориентацией или тонких монокристаллических пластинок, образованы точками или пятнами (рефлексами) с правильным взаимным расположением. При частичной ориентации кристалликов в плёнках по определённому закону (текстуры (См.
Текстура)) получаются отражения в виде дуг (
рис. 1). Электронограммы от образцов, состоящих из беспорядочно расположенных кристалликов, образованы аналогично дебаеграммам равномерно зачернёнными окружностями, а при съёмке на движущуюся фотопластинку (кинематическая съёмка) - параллельными линиями. Перечисленные типы электронограмм получаются в результате упругого, преимущественно однократного, рассеяния (без обмена энергией с кристаллом). При многократном неупругом рассеянии возникают вторичные дифракционные картины от дифрагированных пучков (
рис. 2). Подобные электронограммы называются кикучи-электронограммами (по имени получившего их впервые японского физика). Электронограммы от молекул газа содержат небольшое число диффузных ореолов.
В основе определения элементарной ячейки кристаллической структуры и её симметрии лежит измерение расположения рефлексов на электронограммах. Межплоскостное расстояние d в кристалле определяется из соотношения:
d = Lλ/r,
где L - расстояние от рассеивающего образца до фотопластинки, λ - дебройлевская длина волны электрона, определяемая его энергией, r - расстояние от рефлекса до центрального пятна, создаваемого нерассеянными электронами. Методы расчёта атомной структуры кристаллов в Э. аналогичны применяемым в рентгеновском структурном анализе (изменяются лишь некоторые коэффициенты). Измерение интенсивностей рефлексов позволяет определить структурные амплитуды |Φhkl|. Распределение электростатического потенциала φ(x, у, z) кристалла представляется в виде ряда Фурье:
(
h, k, l - Миллеровские индексы, Ω - объём элементарной ячейки). Максимальные значения φ(
x, у, z) соответствуют положениям атомов внутри элементарной ячейки кристалла (
рис. 3). Таким образом, расчёт значений φ(
x, у, z)
, который обычно осуществляется ЭВМ, позволяет установить координаты
х, у, z атомов, расстояния между ними и т. п.
Методами Э. были определены многие неизвестные атомные структуры, уточнены и дополнены рентгеноструктурные данные для большого числа веществ, в том числе множество цепных и циклических углеводородов, в которых впервые были локализованы атомы водорода, молекулы нитрилов переходных металлов (Fe, Cr, Ni, W), обширный класс окислов ниобия, ванадия и тантала с локализацией атомов N и О соответственно, а также 2- и 3-компонентных полупроводниковых соединений, глинистых минералов и слоистых структур. При помощи Э. можно также изучать строение дефектных структур. В комплексе с электронной микроскопией Э. позволяет изучать степень совершенства структуры тонких кристаллических плёнок, используемых в различных областях современной техники. Для процессов эпитаксии существенным является контроль степени совершенства поверхности подложки до нанесения плёнок, который выполняется с помощью кикучи-электронограмм: даже незначительные нарушения её структуры приводят к размытию кикучи-линий.
На электронограммах, получаемых от газов, нет чётких рефлексов (т. к. объект не обладает строго периодической структурой) и их интерпретация осуществляется др. методами.
Интенсивность каждой точки этих электронограмм определяется как молекулой в целом, так и входящими в неё атомами. Для структурных исследований важна молекулярная составляющая, атомную же составляющую рассматривают как фон и измеряют отношение молекулярной интенсивности к общей интенсивности в каждой точке электронограммы. Эти данные позволяют определять структуры молекул с числом атомов до 10-20, а также характер их тепловых колебаний в широком интервале температур. Таким путём изучено строение многих органических молекул, структуры молекул галогенидов, окислов и других соединений. Аналогичным методом проводят анализ атомной структуры ближнего порядка (см.
Дальний порядок и ближний порядок) в аморфных телах, стеклах и жидкостях.
При использовании медленных электронов их дифракция сопровождается эффектом Оже и другими явлениями, возникающими вследствие сильного взаимодействия медленных электронов с атомами. Недостаточное развитие теории и сложность эксперимента затрудняют однозначную интерпретацию дифракционных картин. Применение этого метода целесообразно в сочетании с масс- и Оже-спектроскопией для исследования атомной структуры адсорбированных слоев, например газов, и поверхностей кристаллов на глубину нескольких атомных слоев (на 10-30 Å). Эти исследования позволяют изучать явления адсорбции, самые начальные стадии кристаллизации и т. д.
Лит.: Пинскер З. Г., Дифракция электронов, М. - Л., 1949; Вайнштейн Б. К., Структурная электронография, М., 1956; Звягин Б. Б., Электронография и структурная кристаллография глинистых минералов, М., 1964.
З. Г. Пинскер.
Рис. 3. Электрический потенциал молекулы дикетопиперазина в кристаллической структуре, полученный путём трёхмерного Фурье-синтеза; а и б - оси симметрии молекулы, непрерывной линией показаны эквипотенциальные поверхности, сгущение линий соответствует положениям атомов.
Рис. 1. Электронограмма, полученная от текстуры.
Рис. 2. Кикучи-электронограмма, полученная методом "на отражение" (симметрично расположены тёмные и светлые кикучи-линии).